Name	Date
------	------

Calculating GPE, EPE and KE

Objectives: You will be able to demonstrate an understanding of Kinetic and Potential Energy by...

- Categorizing situations in which GPE and KE are high and low

object's and

- Calculating GPE, KE, EPE and other variables associated with those types of energy

Do Now: Which of the following balls has more energy? Explain how you know.

A 4 kg B 2 kg 0 4 v	2 kg 4 v	
Brief note: When we calculate Energy, we a	re talking about ONE	
We don't care about what happened	or	We just ask ourselves about the

Activity 2: Use your notes from yesterday on calculating KE, GPE and EPE to solve the following problems:

1. Some students egg their least favorite teacher's house on Halloween. What is the potential energy stored in an egg if it has a mass of 0.06 kg and it is dropped from a height of 3 m?

Known:	Unknown:	Tools (drawing):
Equation(s):	Solve:	Final answer (with units):

2. When the egg hits the ground, it has a speed of 7.7 m/s and the same mass of 0.06 kg. What is the kinetic energy of the egg when it hits the ground?

Name		Date	
Known:	Unknown:	Tools (drawing):	
Equation(s):	Solve:	Final answer (with units):	
		diving platform. She then jumps off the	
	ick in hand, giving herself an initial Total Energy of the witch?	velocity of 4 m/s. The mass of the witch is	
Known:	Unknown:	Tools (drawing):	
Equation(s):	Solve:	Final answer (with units):	
	s a bowling ball at a group of zombane at 3m/s. What is the KE?	ies. The bowling ball has a mass of 4kg and	
Known:	Unknown:	Tools (drawing):	
Equation(s):	Solve:	Final answer (with units):	

5.A 12 kg box of apples for a "bobbing for apples" competition tips over and the apples fall to the ground. An apple has a mass of 1kg, and reaches a speed of 6m/s. What is the KE of 1 of the apples?

Name		Date	
Known:	Unknown:	Tools (drawing):	
Equation(s):	Solve:	Final answer (with units):	
vampire. She pulls		f garlic across the cemetery towards a holding it at a height of 1.2 meters. How ting go?	
Known:	Unknown:	Tools (drawing):	
Equation(s):	Solve:	Final answer (with units):	
7. A high jumper i jumper?	is 2 m up with 1000 J of potential en	nergy. What is the mass of the high	
Known:	Unknown:	Tools (drawing):	
Equation(s):	Solve:	Final answer (with units):	

8. A 12 kg box of apples for the bobbing for apples competition is sitting on top of a shelf. The box has 480 J of potential energy. How high up is the box?

	Date
Unknown:	Tools (drawing):
Solve:	Final answer (with units):
	. He compresses the trampoline by 0.8
	Tools (drawing):
Solve:	Final answer (with units):
gee-iumping. His bungee cord. v	which has a spring constant of 50 N/m, has
. How far is his bungee cord stre	
Unknown:	Tools (drawing):
Solve:	Final answer (with units):
	Solve: Solve: Solve: Solve: Solve: Solve: Unknown: Solve: Unknown: Unknown: