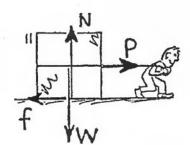
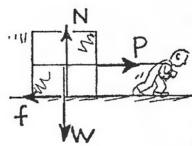

CONCEPTUAL PRISICS PRACTICE PAGE


Chapter 4 Newton's Second Law of Motion Friction


- A crate filled with delicious junk food rests on a horizontal floor.
 Only gravity and the support force of the floor act on it, as shown by the vectors for weight W and normal force N.
 - a. The net force on the crate is [zero] [greater than zero].
 - b. Evidence for this is _____

- 2. A slight pull **P** is exerted on the crate, not enough to move it. A force of friction **f** now acts,
 - a. which is [less than] [equal to] [greater than] P.
 - b. Net force on the crate is [zero] [greater than zero].

- 3. Pull **P** is increased until the crate begins to move. It is pulled so that it moves with constant velocity across the floor.
 - a. Friction f is [;less than] [equal to] [greater than] P.
 - b. Constant velocity means acceleration is [zero] [more than zero].
 - c. Net force on the crate is [less than] [equal to] [more than] zero.

- 4. Pull P is further increased and is now greater than friction f.
 - a. Net force on the crate is [less than] [equal to] [greater than] zero.
 - b. The net force acts toward the right, so acceleration acts toward the [left] [right].
- 5. If the pulling force P is 150 N and the crate doesn't move, what is the magnitude of f?
- 6. If the pulling force **P** is 200 N and the crate doesn't move, what is the magnitude of **f**?
- 7. If the force of sliding friction is 250 N, what force is necessary to keep the crate sliding at constant velocity?
- 8. If the mass of the crate is 50 kg and sliding friction is 250 N, what is the acceleration of the crate when the pulling force is 250 N? ______ 300 N? _____ 500 N?