Name		· · · · · · · · · · · · · · · · · · ·		
rvaine _	Class		Date	
	Ciuss		Date _	

Chapter 4 Linear Motion

Summary

THE BIG

You can describe the motion of an object by its position, IDEA speed, direction, and acceleration.

4.1 Motion Is Relative

An object is moving if its position relative to a fixed point is changing.

- When we describe the motion of one object with respect to another, we say that the object is moving relative to the other object.
- Unless stated otherwise, when we discuss the speeds of things in our environment, we mean speed with respect to the surface of Earth.

4.2 Speed

- You can calculate the speed of an object by dividing the distance covered by time.
- Galileo is credited as being the first to measure speed by considering the distance covered and the time it takes.
- Speed is how fast an object is moving.
- Any combination of units for distance and time that are useful and convenient are legitimate for describing speed.
- Some units that describe speed are miles per hour (mi/h) and kilometers per hour. The slash symbol (/) is read as "per."
- The speed of an object at any instant is called the **instantaneous speed**.
- The average speed of an object is the total distance covered divided by the time.
- Average speed does not indicate variations in the speed that may take *place during the trip.
- A simple rearrangement of the definition of average speed gives the total distance covered:

total distance covered = average speed × travel time

4.3 Velocity

- Speed is a description of how fast an object moves; velocity is how fast and in what direction it moves.
- Velocity is speed in a given direction.
- A quantity such as velocity, which specifies direction as well as magnitude, is called a vector quantity.
- Quantities that require only magnitude for a description are scalar quantities.
- Constant speed means steady speed.
- Constant velocity means both constant speed and constant direction, which is in a straight line.
- If either an object's speed or its direction (or both) is changing, then the object's velocity is changing.

Name	Class	Date
r varrie	Class	

Chapter 4 Linear Motion

4.4 Acceleration

- You can calculate the acceleration of an object by dividing the change in its velocity by time.
- Acceleration is the rate at which the velocity is changing.
- In physics, the term *acceleration* applies to decreases as well as increases in speed.
- Acceleration also applies to changes in direction.
- Acceleration is defined as the rate of change in *velocity*, rather than *speed*.
- Acceleration, like velocity, is a vector quantity because it is directional.
- If an object's speed, direction, or both, changes, the object changes velocity and accelerates.
- When the direction is not changing, acceleration may be expressed as the rate at which *speed* changes.
- Since acceleration is the change in velocity or speed per time interval, its units are those of speed per time.

Name	Class Date
Chapter 4 Linear Motion	
Exercises	
4.1 Motion Is Relative (pa	ge 47)
1. Is the following sentence true	or false? When we describe the motion nother, we say that the object is moving
	if its position relative to a fixed point
	s per hour down the street. What is the
4.2 Speed (pages 48-49)	
4. Define speed.	
5. Complete the following equation	ion: speed = distance/
6. How is the slash symbol read	in <i>km/h</i> ?
	ces that are true of instantaneous speed.
a. Instantaneous speed is the time.	total distance covered divided by
b. Instantaneous speed is the	speed at any instant.
c. The speedometer on a car s	shows the instantaneous speed.
d. If you traveled 30 kilomete speed would be 30 km/h.	ers in 1 hour, your instantaneous
8. How is average speed calculated	ted?
9. If you traveled 80 kilometers i	in 2 hours, what was your average speed?
10. If your average speed is 30 kill 1 hour, what was the total dist	ometers per hour and your trip took tance covered?
4.3 Velocity (page 50)	
Determine if each of the following sta correct word on the line provided.	ntements is true or false. Write the
11. Speed is velocity	in a given direction.
	lane can be described as 300 mi/h.
	car can be described as 60 km/h to the
14. Speed is a vector	duantity.
15. Velocity is a vect	
10. Velocity is a vect	or quantity.

Name			Class		Date
	Linear Motio	on			
16. If either changing	r the ng (or both are)), then the v	or the elocity is c	hanging.	is
_	eleration (p				
	acceleration?				
18. How is	acceleration ca	lculated?			
19. In physi	ics, the term ac	celeration ap	oplies to bo	oth	and
20. Acceleration or both.	ation is a chang	ge in speed,	a change	in	,
21. Is the fo	llowing senten	ce true or f	alse? Accel	eration is a	vector quantity.
	s traveling aro			way at a co	onstant speed, is
23. Circle the	e letter of the v	alue and u	nits that re	present acc	celeration.
a. 5 km	b.	15 km/s			
c. 25 s/k	m d.	$55 \mathrm{km/s^2}$			